\(\int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2}} \, dx\) [136]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 42, antiderivative size = 182 \[ \int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2}} \, dx=-\frac {14 c^2 (g \cos (e+f x))^{5/2}}{3 a f g \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}-\frac {14 c^2 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{a f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}-\frac {4 c (g \cos (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}{f g (a+a \sin (e+f x))^{3/2}} \]

[Out]

-14/3*c^2*(g*cos(f*x+e))^(5/2)/a/f/g/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)-14*c^2*g*(cos(1/2*f*x+1/2*e
)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticE(sin(1/2*f*x+1/2*e),2^(1/2))*cos(f*x+e)^(1/2)*(g*cos(f*x+e))^(1/2)/a/f/
(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)-4*c*(g*cos(f*x+e))^(5/2)*(c-c*sin(f*x+e))^(1/2)/f/g/(a+a*sin(f*x
+e))^(3/2)

Rubi [A] (verified)

Time = 0.58 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.119, Rules used = {2929, 2930, 2921, 2721, 2719} \[ \int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2}} \, dx=-\frac {14 c^2 (g \cos (e+f x))^{5/2}}{3 a f g \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {14 c^2 g \sqrt {\cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{a f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {4 c \sqrt {c-c \sin (e+f x)} (g \cos (e+f x))^{5/2}}{f g (a \sin (e+f x)+a)^{3/2}} \]

[In]

Int[((g*Cos[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2))/(a + a*Sin[e + f*x])^(3/2),x]

[Out]

(-14*c^2*(g*Cos[e + f*x])^(5/2))/(3*a*f*g*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) - (14*c^2*g*Sqrt[
Cos[e + f*x]]*Sqrt[g*Cos[e + f*x]]*EllipticE[(e + f*x)/2, 2])/(a*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e +
 f*x]]) - (4*c*(g*Cos[e + f*x])^(5/2)*Sqrt[c - c*Sin[e + f*x]])/(f*g*(a + a*Sin[e + f*x])^(3/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2921

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)]]), x_Symbol] :> Dist[g*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), In
t[(g*Cos[e + f*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2
, 0]

Rule 2929

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e
 + f*x])^n/(f*g*(2*n + p + 1))), x] - Dist[b*((2*m + p - 1)/(d*(2*n + p + 1))), Int[(g*Cos[e + f*x])^p*(a + b*
Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c +
a*d, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 0] && LtQ[n, -1] && NeQ[2*n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 2930

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e
 + f*x])^n/(f*g*(m + n + p))), x] + Dist[a*((2*m + p - 1)/(m + n + p)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e +
f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] &&
EqQ[a^2 - b^2, 0] && GtQ[m, 0] && NeQ[m + n + p, 0] &&  !LtQ[0, n, m] && IntegersQ[2*m, 2*n, 2*p]

Rubi steps \begin{align*} \text {integral}& = -\frac {4 c (g \cos (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}{f g (a+a \sin (e+f x))^{3/2}}-\frac {(7 c) \int \frac {(g \cos (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}{\sqrt {a+a \sin (e+f x)}} \, dx}{a} \\ & = -\frac {14 c^2 (g \cos (e+f x))^{5/2}}{3 a f g \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}-\frac {4 c (g \cos (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}{f g (a+a \sin (e+f x))^{3/2}}-\frac {\left (7 c^2\right ) \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx}{a} \\ & = -\frac {14 c^2 (g \cos (e+f x))^{5/2}}{3 a f g \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}-\frac {4 c (g \cos (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}{f g (a+a \sin (e+f x))^{3/2}}-\frac {\left (7 c^2 g \cos (e+f x)\right ) \int \sqrt {g \cos (e+f x)} \, dx}{a \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = -\frac {14 c^2 (g \cos (e+f x))^{5/2}}{3 a f g \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}-\frac {4 c (g \cos (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}{f g (a+a \sin (e+f x))^{3/2}}-\frac {\left (7 c^2 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)}\right ) \int \sqrt {\cos (e+f x)} \, dx}{a \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = -\frac {14 c^2 (g \cos (e+f x))^{5/2}}{3 a f g \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}-\frac {14 c^2 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{a f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}-\frac {4 c (g \cos (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}{f g (a+a \sin (e+f x))^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 4.16 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.10 \[ \int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2}} \, dx=\frac {2 c (g \cos (e+f x))^{3/2} \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^2 \left (21 E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )+\sqrt {\cos (e+f x)} \left (\cos \left (\frac {1}{2} (e+f x)\right ) (12+\cos (e+f x))+(-12+\cos (e+f x)) \sin \left (\frac {1}{2} (e+f x)\right )\right )\right ) (-1+\sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{3 f \cos ^{\frac {3}{2}}(e+f x) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 (a (1+\sin (e+f x)))^{3/2}} \]

[In]

Integrate[((g*Cos[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2))/(a + a*Sin[e + f*x])^(3/2),x]

[Out]

(2*c*(g*Cos[e + f*x])^(3/2)*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^2*(21*EllipticE[(e + f*x)/2, 2]*(Cos[(e + f*
x)/2] + Sin[(e + f*x)/2]) + Sqrt[Cos[e + f*x]]*(Cos[(e + f*x)/2]*(12 + Cos[e + f*x]) + (-12 + Cos[e + f*x])*Si
n[(e + f*x)/2]))*(-1 + Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]])/(3*f*Cos[e + f*x]^(3/2)*(Cos[(e + f*x)/2] - Sin
[(e + f*x)/2])^3*(a*(1 + Sin[e + f*x]))^(3/2))

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.45 (sec) , antiderivative size = 1473, normalized size of antiderivative = 8.09

method result size
default \(\text {Expression too large to display}\) \(1473\)

[In]

int((g*cos(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/3/f*(g*cos(f*x+e))^(1/2)*(-c*(sin(f*x+e)-1))^(1/2)*g*c/(sin(f*x+e)-1)/(1+cos(f*x+e))/(a*(1+sin(f*x+e)))^(1/2
)/a*(3*ln(2*(2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)-cos(f*x+
e)+1)/(1+cos(f*x+e)))*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(3/2)*cos(f*x+e)^3-3*ln((2*(-cos(f*x+e)/(1+cos(f*x+e))^2)
^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)-cos(f*x+e)+1)/(1+cos(f*x+e)))*(-cos(f*x+e)/(1+cos(f*x
+e))^2)^(3/2)*cos(f*x+e)^3-21*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*
x+e)-cot(f*x+e)),I)*cos(f*x+e)^2-42*I*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x
+e)/(1+cos(f*x+e)))^(1/2)*cos(f*x+e)+12*ln(2*(2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)
/(1+cos(f*x+e))^2)^(1/2)-cos(f*x+e)+1)/(1+cos(f*x+e)))*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(3/2)*cos(f*x+e)^2-12*ln
((2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)-cos(f*x+e)+1)/(1+co
s(f*x+e)))*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(3/2)*cos(f*x+e)^2-21*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(
f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)+21*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e))
)^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*cos(f*x+e)^2+18*ln(2*(2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*co
s(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)-cos(f*x+e)+1)/(1+cos(f*x+e)))*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(
3/2)*cos(f*x+e)-18*ln((2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2
)-cos(f*x+e)+1)/(1+cos(f*x+e)))*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(3/2)*cos(f*x+e)+42*I*EllipticE(I*(csc(f*x+e)-c
ot(f*x+e)),I)*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*cos(f*x+e)+21*I*(1/(1+cos(f*x+e)))^(1
/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)+12*ln(2*(2*(-cos(f*x+e)/(1+cos(f*
x+e))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)-cos(f*x+e)+1)/(1+cos(f*x+e)))*(-cos(f*x+e)/(1
+cos(f*x+e))^2)^(3/2)-12*ln((2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*x+e))^2
)^(1/2)-cos(f*x+e)+1)/(1+cos(f*x+e)))*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(3/2)+3*ln(2*(2*(-cos(f*x+e)/(1+cos(f*x+e
))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)-cos(f*x+e)+1)/(1+cos(f*x+e)))*(-cos(f*x+e)/(1+co
s(f*x+e))^2)^(3/2)*sec(f*x+e)-3*ln((2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*
x+e))^2)^(1/2)-cos(f*x+e)+1)/(1+cos(f*x+e)))*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(3/2)*sec(f*x+e)+cos(f*x+e)^3+cos(
f*x+e)^2+9*cos(f*x+e)*sin(f*x+e)+12*cos(f*x+e)-12*sin(f*x+e)+12)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 173, normalized size of antiderivative = 0.95 \[ \int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2}} \, dx=-\frac {2 \, {\left (c g \sin \left (f x + e\right ) + 13 \, c g\right )} \sqrt {g \cos \left (f x + e\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} + 21 \, {\left (-i \, \sqrt {2} c g \sin \left (f x + e\right ) - i \, \sqrt {2} c g\right )} \sqrt {a c g} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) + 21 \, {\left (i \, \sqrt {2} c g \sin \left (f x + e\right ) + i \, \sqrt {2} c g\right )} \sqrt {a c g} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right )}{3 \, {\left (a^{2} f \sin \left (f x + e\right ) + a^{2} f\right )}} \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

-1/3*(2*(c*g*sin(f*x + e) + 13*c*g)*sqrt(g*cos(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c) +
21*(-I*sqrt(2)*c*g*sin(f*x + e) - I*sqrt(2)*c*g)*sqrt(a*c*g)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0,
 cos(f*x + e) + I*sin(f*x + e))) + 21*(I*sqrt(2)*c*g*sin(f*x + e) + I*sqrt(2)*c*g)*sqrt(a*c*g)*weierstrassZeta
(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) - I*sin(f*x + e))))/(a^2*f*sin(f*x + e) + a^2*f)

Sympy [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate((g*cos(f*x+e))**(3/2)*(c-c*sin(f*x+e))**(3/2)/(a+a*sin(f*x+e))**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2}} \, dx=\int { \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((g*cos(f*x + e))^(3/2)*(-c*sin(f*x + e) + c)^(3/2)/(a*sin(f*x + e) + a)^(3/2), x)

Giac [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2}} \, dx=\int \frac {{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{3/2}}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \]

[In]

int(((g*cos(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(3/2))/(a + a*sin(e + f*x))^(3/2),x)

[Out]

int(((g*cos(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(3/2))/(a + a*sin(e + f*x))^(3/2), x)